Enrollment No:	Exam Seat No:	

C.U.SHAH UNIVERSITY

SummerExamination-2019

Subject Name: Mathematics - II

Subject Code: 4SC02MAT1 Branch: B.Sc. (All)

Semester: 2 Date: 29/04/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	Find polar form of $(1+i)$	1
	b)	If $y = \cos \theta + i \sin \theta$ then find value of $y + \frac{1}{y}$.	1
	c)	If z is purely imaginary then $z \neq \overline{z}$. True/False.	1
	d)	The number i^i is purely imaginary number. True/False.	1
	e)	Define: Reciprocal cone.	1
		Write standard form of Ellipsoid.	1
	_	Solve: $(D-1)^2 y = 0$	2
	h)	Find $\frac{1}{D-a}$ k, where k is constant.	2
	i)	Write tangency condition for cone.	2
	j)	Prove that $\sin ix = i \sin hx$.	2
Attempt	any	four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	a)	Consider the equation $(D^n + a_1D^{n-1} + a_2D^{n-2} + \cdots + a_n)y = 0$ where	6
		a_i 's are constant. If m_1, m_2, m_n are real and different roots of A.E.	
		Then prove that $y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \dots + c_n e^{m_n x}$ is complete	
		solution of given equation.	
	b)	Find Particular Integral of	4
		$(D-1)(D-2)y = e^{-2x} + e^x + \sin 2x + \cos 3x.$	_
0.4	c)	Solve: $(D^4 - 1)y = e^x \cos x.$	4
Q-3	`	Attempt all questions	(14)
		Solve: $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 20y = (x+1)^2$.	5
	b)	Solve: $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\log(1+x)$.	5
		Solve: $\frac{dx}{dt} + y = e^t, \frac{dy}{dt} + x = e^{-t}.$	4
0.4		ut ut	(4 A)
Q-4	,	Attempt all questions	(14)
		Prove that $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \forall n \in Q$.	5 5
	D)	Solve: $(D^2 - 1)y = \cos hx \cos x$.	5

	c)	Prove that $\frac{1}{n-m}X = e^{mx} \int e^{-mx} X dx$.	4
Q-5		Attempt all questions	(14)
	a)	Prove that $\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right)+i\sin\left(\frac{n\pi}{2}-n\theta\right)$.	5
	b)	Solve: $x^4 - x^3 + x^2 - x + 1 = 0$.	5
	c)	Prove that $(a+ib)^{\frac{m}{n}} + (a-ib)^{\frac{m}{n}} = 2(a^2+b^2)^{\frac{m}{2n}}\cos(\frac{m}{n}\tan^{-1}\frac{b}{a}).$	4
Q-6		Attempt all questions	(14)
	a)	Expand $\sin^5 \theta$ in a series of sine multiple of θ .	5
		If $\cos^{-1}(u+iv) = x + iy$ then prove that	5
	ŕ	(1) $u^2 \sec^2 x - v^2 \csc^2 x = 1$.	
		$(2) u^2 \operatorname{sec} h^2 y + v^2 \operatorname{cosech}^2 y = 1.$	
	c)	Find real and imaginary part of $(i)^i$.	4
Q-7		Attempt all questions	(14)
	a)	Prove that equation of cone which passes through (α, β, γ) and having	6
		guiding curve conic is	
		$a(\alpha z - x\gamma)^2 + b(\beta z - y\gamma)^2 + c(z - \gamma)^2 + 2h(\alpha z - xy)$	
		$(\beta z - y\gamma) + 2g(\alpha z - x\gamma)(z - \gamma) + 2f(\beta z - y\gamma)(z - \gamma) = 0.$	
	b)	Find equation of cone whose vertex is $(-1, -2, -3)$ and base curve is	5
		$x^2 + z^2 = 1, y = 0.$	
	c)	Identify the surface $x^2 + y^2 + z^2 + 4x - 6y = 3$.	3
Q-8	,	Attempt all questions	(14)
	a)	Prove that equation of right circular cylinder having axis line	6
		$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ and radius r is	
		$(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2 - \frac{[l(x-\alpha) + m(y-\beta) + n(z-\gamma)]^2}{l^2 + m^2 + n^2}$	
		$l^2 + m^2 + n^2$ $= r^2$	
	h)		5
	D)	Find equation of cylinder whose generators are parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and	J
		having guiding curve $x^2 + y^2 = 16$, $z = 0$	

- having guiding curve $x^2 + y^2 = 16$, z = 0. c) Find reciprocal cone of $ax^2 + by^2 + cz^2 = 0$.
- 3

